Regioselective Synthesis of 7-(Trimethylsilylethynyl)pyrazolo[1,5-*a*]pyrimidines via Reaction of Pyrazolamines with Enynones

Pavel Golubev, Ekaterina A. Karpova, Alena S. Pankova,* Mariia Sorokina, and Mikhail A. Kuznetsov

Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, 198504 Saint Petersburg, Russia

Supporting Information

ABSTRACT: Condensation of enynones readily available from cheap starting material with pyrazolamines provides easy access to fluorescent 7-(trimethylsilylethynyl)pyrazolo[1,5-*a*]pyrimidines. The reaction is straightforward, does not require the use of any additional reagents or catalysts, and can be performed without inert atmosphere. Various substituents and functional groups in both enynone and pyrazolamine are tolerated. The presented method features full regioselectivity, high isolated yields, and simplicity of both setup and product purification. Fluorescent properties of the obtained pyrazolopyrimidines were studied.

INTRODUCTION

Pyrazolopyrimidines are a family of fused azaheterocycles, of which pyrazolo[1,5-a]pyrimidines are of particular importance due to an extremely broad range of biological activities. Perhaps the most well-known examples are approved sedative agents Zaleplon¹ and Indiplon² and anxiolytic agent Ocinaplon.³ Compounds with a central core of pyrazolo[1,5-a]pyrimidine have the potential to be efficacious for treatment of sleep disorder and as antidepressants,⁴ anticancer,⁵ antitumor,⁶ antimicrobial,⁷ antibacterial,⁸ antitrichomonal,⁹ and antischistosomal¹⁰ agents. Moreover, certain pyrazolo[1,5-a]pyrimidines were examined as CRF,¹¹ serotonin 5-HT,¹² GABA/ GABAA,^{3,4,13} and estrogen¹⁴ receptor antagonists; as hepatitis C virus inhibitors¹⁵ and PIM-1¹⁶ and COX-2¹⁷ inhibitors; and as potassium channel openers.¹⁸ Labeled pyrazolopyrimidines were used as agents for PET tumor detection.¹⁹ Because of their multiple applications, pyrazolo[1,5-a]pyrimidines are considered to be privileged structures for drug design.²⁰ Besides medicinal applications, azo-substituted pyrazolo[1,5*a*]pyrimidines have found application as dyes in photographic technology.²

The vast majority of known methods for synthesis of pyrazolo[1,5-*a*]pyrimidines rely on condensation of *N*-unsubstituted pyrazolamines with 1,3-dicarbonyl compounds or their analogues.¹⁷ Among such analogues, enaminones and enaminonitriles,²² ethoxymethylene derivatives,²³ β -halovinyl aldehydes,²⁴ and allenic ketones²⁵ were employed successfully. A less obvious example is the condensation of 1,3,5-triaryl 1,5-dicarbonyl compounds with pyrazolamines, which proceeds with loss of one of the carbonyl groups.²⁶ Microwave²⁷ and ultrasonic irradiation²⁸ were used to facilitate the reaction. A couple of three-component procedures for synthesis of pyrazolo[1,5-*a*]pyrimidines were also developed.²⁹ Finally, one-pot, two-step procedures for condensation of aroylacetoni-

triles with hydrazine hydrate³⁰ or sulfonylhydrazides³¹ without isolation of pyrazolamines were reported.

Over the past several years, we have been interested in the synthesis of ethynylated heterocyclic building blocks because acetylenes have emerged as extremely useful compounds for numerous transformations such as cross-coupling or click reactions. We reported earlier on synthesis of 2-aryl-1-ethoxy-5-(trimethylsilyl)pent-1-en-4-yn-3-ones 1 and demonstrated their applicability for the synthesis of ethynylated pyrazoles and pyrimidines.³² These results prompted us to use these enynones in reactions with pyrazolamines, which, if successful, would open straightforward access to ethynylated pyrazolo[1,5*a*]pyrimidines. It is important to mention that few examples of such compounds were reported in the literature, and Sonogashira reaction was used for their preparation in all cases;³³ moreover, we were unable to find any examples of 7alkynylpyrazolo[1,5-a]pyrimidines. In this work, we report the successful application of pentenynones for the synthesis of this type of pyrazolopyrimidine.

RESULTS AND DISCUSSION

We selected enynone **1a** and 3(5)-(4-methylphenyl)-1*H*-pyrazol-5(3)-amine (**2c**) as model substrates for optimization of the reaction conditions. Previously, we showed that ethanol is the solvent of choice for reactions of enynones **1** with hydrazines and amidines,³² and therefore, the first experiment was carried out in ethanol at 80 °C in a sealed vessel. To our delight, no further optimization was needed because the single product was isolated in 85% yield (Scheme 1).

According to its ¹H and ¹³C NMR spectra and HRMS data, this product was identified as (trimethylsilylethynyl)pyrazolo-

Received: September 9, 2016 Published: October 17, 2016

Scheme 1. Reaction of Ketone 1a with Pyrazolamine 2c

[1,5-*a*]pyrimidine. However, these data were insufficient to unambiguously determine position of the alkynyl substituent because the obtained compound could be one of the two possible regioisomeric pyrazolopyrimidines. Our previous results indicate that the carbon atom adjacent to the ethoxy group is the most active electrophilic center of enynones $1.^{34}$ On the other hand, relative nucleophilicity of endo- and exocyclic nitrogen atoms in 1-unsubstituted pyrazol-3(5)-amines is not so clear because controversial results can be found in the literature.³⁵ The structure of 7-ethynylpyrazolo-[1,5-*a*]pyrimidine **3ac** was confirmed by ${}^{1}\text{H}{-}{}^{15}\text{N}$ HSQMBC spectroscopy (see Supporting Information for details).

Once optimal reaction conditions were found, we carried out a series of experiments with variously substituted enynones 1 and 3(5)-aryl-1*H*-pyrazol-5(3)-amines 2 (Table 1). All reactions proceeded regioselectively, and 7-(trimethylsilylethynyl)pyrazolo[1,5-*a*]pyrimidines 3aa-ed were isolated in good to excellent yields. X-ray analysis data were obtained for compound 3aa to unambiguously prove its structure.³⁶

In line with our previous results, no products of Michael-type addition to the triple bond were detected, and yields of pyrazolopyrimidines were above 80% in most cases. We believe that the reaction mechanism includes the following steps: addition of a pyrazolamine exocyclic amine group to the double bond and elimination of an ethanol molecule to produce enamine A followed by a cyclization—elimination—tautomerization sequence (Table 1). Even though we did not manage to detect enamines A in this study, this hypothesis is supported by the fact that earlier we isolated an analogous enamine derived from ketone 1a and 3-(4-chlorophenyl)-1-phenyl-1*H*-pyrazol-5amine as a stable solid.³⁴

Ketones $1c_{,e}$ and variously substituted pyrazolamines 2e-j were used to further investigate and extend the reaction scope (Table 2).

All of these reactions were also regioselective, and pyrazolopyrimidines 3ce-ej were the only products, but the yields were lower than that in the first series. Nevertheless, unsubstituted pyrazol-3(5)-amine 2e was employed successfully as well as 3-(3-fluorophenyl)-1*H*-pyrazol-5-amine 2f. Derivatives of 5-amino-1*H*-pyrazole-4-carboxylic acid 2g,h provided good yields of corresponding products, displaying the possibility for direct synthesis of functionalized ethynylated pyrazolopyrimidines. Finally, two disubstituted pyrazolamines 2i,j were used to synthesize compounds 3ci-ej in moderate yields. Generally, the reaction outcome is not influenced by the substituent in ketone 1 but depends on the type of pyrazolamine used.

Worth noting is the retention of the TMS group in all products. We have shown that reactions of ketones 1 with amidines led to formation of ethynylpyrimidines with a terminal triple bond if performed in protic solvent.^{32b} However, the basicity of pyrazolamines did not appear to be high enough to deprotect the triple bond in compounds 3 even though the reactions were carried out in ethanol at elevated temperature and in the presence of excess pyrazolamines.

Table 1. Reactions of	of Ketones	la–e wit	h 3(5)-Ary	l-1 <i>H-</i> pyrazo	1-5(:	3)-amines 2a–	·d"
-----------------------	------------	----------	-------	-------	----------------------	-------	---------------	-----

	TMS-=	$ = \bigvee_{\substack{Ar^1 \\ OEt}}^{O} Ar^1 + H_2 N \bigvee_{\substack{N \\ H}}^{Ar^1} N $	$\xrightarrow{\text{EtOH}} \left[\text{TMS} \right]$	$ \left(\begin{array}{c} 0 \\ HN \\ \hline \\ HN \\ H \end{array} \right) \left(\begin{array}{c} HOH \\ H \\ H \end{array} \right) \left(\begin{array}{c} HOH \\ \hline \\ 80 \circ C \end{array} \right) $		
	1a	-e 2a-d	A , n	ot isolated	3aa-ed	
no.	enynone	Ar^1	pyrazolamine	Ar^{2}	pyrazolopyrimidine	yield, %
1	1a	$4-O_2NC_6H_4$	2a	4-ClC ₆ H ₄	3aa	94
2	1a	$4-O_2NC_6H_4$	2b	Ph	3ab	91
3	1a	$4-O_2NC_6H_4$	2c	$4-H_3CC_6H_4$	3ac	85
4	1a	$4-O_2NC_6H_4$	2d	4-H ₃ COC ₆ H ₄	3ad	81
5	1b	4-ClC ₆ H ₄	2a	$4-ClC_6H_4$	3ba	93
6	1b	4-ClC ₆ H ₄	2b	Ph	3bb	89
7	1b	$4-ClC_6H_4$	2c	$4-H_3CC_6H_4$	3bc	88
8	1b	4-ClC ₆ H ₄	2d	4-H ₃ COC ₆ H ₄	3bd	85
9	1c	Ph	2a	$4-ClC_6H_4$	3ca	87
10	1c	Ph	2b	Ph	3cb	87
11	1c	Ph	2c	$4-H_3CC_6H_4$	3cc	88
12	1c	Ph	2d	4-H ₃ COC ₆ H ₄	3cd	82
13	1d	$4-H_3CC_6H_4$	2a	4-ClC ₆ H ₄	3da	91
14	1d	$4-H_3CC_6H_4$	2b	Ph	3db	84
15	1d	$4-H_3CC_6H_4$	2c	$4-H_3CC_6H_4$	3dc	86
16	1d	$4-H_3CC_6H_4$	2d	4-H ₃ COC ₆ H ₄	3dd	82
17	1e	4-H ₃ COC ₆ H ₄	2a	$4-ClC_6H_4$	3ea	85
18	1e	4-H ₃ COC ₆ H ₄	2b	Ph	3eb	61
19	1e	$4-H_3COC_6H_4$	2c	$4-H_3CC_6H_4$	3ec	61
20	1e	4-H ₃ COC ₆ H ₄	2d	4-H ₃ COC ₆ H ₄	3ed	65

^{*a*}Reactions were performed on 0.33 mmol scale. Isolated yields are given.

Table 2. Reactions of Ketones 1c, e with 1H-Pyrazol-5(3)-amines $2e-j^{a}$

Figure 1. Overlay of UV-vis spectra for 10⁻⁵ M solution of compound 3ej in CHCl₃: red, absorption spectrum; green, excitation spectrum; blue, emission spectrum. Left y-axis refers to absorption spectrum; right y-axis refers to excitation and emission spectra.

Pyrazolopyrimidines 3 display distinctive fluorescent properties under a 366 nm laboratory UV lamp. Therefore, their UVvis absorption, excitation, and emission spectra were recorded. In Figure 1, spectra of compound 3ej are given as a representative example.

Clear correlation between the electronic effect of both substituents and UV characteristics was observed for pyrazolopyrimidines 3aa-3ed. Two absorption bands were observed in all cases at $\lambda \approx 270$, 330 nm (compounds 3aa-**3ad**) and at $\lambda \approx 290$, 360 nm (**3ba**-**3ed**). Thus, presence of a p-nitrophenyl ring at the C⁶ position of pyrazolopyrimidine core notably influences the observed Stokes shifts. Emission maxima were observed at $\lambda \approx 500$ nm (3aa–3ad) and at $\lambda \approx$ 490 nm (3ba-3ed), so the Stokes shifts for compounds 3aa-3ad are about 170 and 130 nm for compounds 3ba-3ed. It is also interesting to mention that absorption bands in the spectra

of compounds 3aa-3ad have close intensities ($\varepsilon \approx 29\,000$ and 17 000 for shortwave/longwave bands, respectively), while in case of compounds 3ba-3ed, the shortwave band is always more intensive ($\varepsilon \approx 35\,000$ and 6000). Very weak emission was observed for compounds 3ce,ee. Pyrazolopyrimidines 3cg-eh and 3cj,ej are very similar in terms of their UV characteristics: emission maxima are at 450 \pm 10 nm, and Stokes shifts are about 100 nm. Interestingly, compound 3ej has the highest fluorescence quantum yield: $\Phi = 42 \pm 10\%$.

Finally, in order to demonstrate the possibility of further modification of the obtained pyrazolopyrimidines, we deprotected the triple bond in compound 3cb (Scheme 2). First, a scale-up experiment was performed, and pyrazolopyrimidine 3cb was obtained in 85% yield (1.65 mmol scale). Next, the triple bond was deprotected using potassium carbonate in MeOH. The reaction was complete within 2 h at room

temperature, and pyrazolopyrimidine **4** containing a terminal acetylenic fragment was isolated in 80% yield.

CONCLUSION

In summary, we have developed a simple and efficient transition-metal-free procedure for the preparation of 6-aryl-7-(trimethylsilylethynyl)pyrazolo[1,5-*a*]pyrimidines from readily available starting material. Selective formation of title compounds, functional groups tolerance, good yields, and simple workup make this method a convenient tool for the synthesis of fluorescent 7-ethynylpyrazolo[1,5-*a*]pyrimidines.

EXPERIMENTAL SECTION

General Methods. ¹H and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ and were referenced to the solvent residual proton ($\delta_{\rm H}$ = 7.26 and 2.50 ppm, respectively) and solvent carbon signals ($\delta_{\rm C}$ = 77.16 and 39.52 ppm, respectively). DEPT spectra were used for the assignment of carbon signals. UV–vis spectra were recorded for 10⁻⁵ M solutions in CHCl₃, and extinction coefficients are given in parentheses. Preparation of enynones **1a**–**e** was described previously.³²

General Procedure for the Preparation of Pyrazolo[1,5a]pyrimidines. A stirred mixture of enynones 1a-e (0.33 mmol) and pyrazolamines 2a-j (0.35 mmol) in EtOH (2 mL) was heated in a screw-cap vial at 78 °C for 12-20 h (TLC monitoring). Upon completion, solvent was removed by evaporation under reduced pressure, and the residue was purified by flash chromatography on silica (hexane/EtOAc 9:1).

2-(4-Chlorophenyl)-6-(4-nitrophenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3aa**): Bright yellow solid; yield 139 mg (94%); mp 204–206 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 [s, 9 H]; 7.08 (s, 1 H); 7.45–7.47 (m, 2 H); 7.87–7.89 (m, 2 H); 7.99– 8.01 (m, 2 H); 8.36–8.38 (m, 2 H); 8.53 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 93.0 (C); 95.1 (CH); 116.0 (C); 123.4 (C); 123.9 (CH); 126.9 (C); 128.1 (CH); 129.2 (CH); 130.5 (CH); 131.1 (C); 135.4 (C); 140.9 (C); 148.0 (C); 148.7 (CH); 149.2 (C); 156.1 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₃H₁₉ClN₄O₂Si 447.1039, found 447.1050; UV–vis λ_{max} ($\varepsilon \times$ 10⁻⁴) 270 (3.66), 326 (2.30), 372 (1.30) nm; emission λ_{max} 501 nm.

6-(4-Nitrophenyl)-2-phenyl-7-(trimethylsilylethynyl)pyrazolo[1,5a]pyrimidine (**3ab**): Bright yellow solid; yield 124 mg (91%); mp 193–195 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.31 (s, 9 H); 7.12 (s, 1 H); 7.41–7.45 (m, 1 H); 7.48–7.52 (m, 2 H); 7.88–7.91 (m, 2 H); 8.07–8.09 (m, 2 H); 8.36–8.38 (m, 2 H); 8.52 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 93.1 (C); 95.1 (CH); 115.8 (C); 123.1 (C); 123.9 (CH); 126.9 (CH); 129.0 (CH); 129.5 (CH); 130.5 (CH); 132.6 (C); 141.0 (C); 147.9 (C); 148.5 (CH); 149.2 (C); 157.3 (C) ppm; one signal is overlapped; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₃H₂₀N₄O₂Si 413.1428, found 413.1440; UV–vis λ_{max} (ε × 10⁻⁴) 263 (2.95), 326 (1.72) nm; emission λ_{max} 500 nm.

2-(4-Methylphenyl)-6-(4-nitrophenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ac**): Bright yellow solid; yield 119 mg (85%); mp 185–187 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 2.43 (s, 3 H); 7.08 (s, 1 H); 7.30 (d, *J* = 8.0 Hz, 2 H); 7.87–7.90 (m, 2 H); 7.96 (d, *J* = 8.0 Hz, 2 H); 8.35–8.38 (m, 2 H); 8.50 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 21.6 (CH₃); 93.1 (C); 94.8 (CH); 115.6 (C); 122.9 (C); 123.8 (CH); 126.7 (CH); 129.66 (CH); 129.75 (C); 130.5 (CH); 139.6 (C); 141.1 (C); 147.9 (C); 148.4 (CH); 149.2 (C); 157.5 (C) ppm; one signal is overlapped; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₄H₂₂N₄O₂Si 427.1585, found 427.1593; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 268 (2.90), 330 (1.69) nm; emission λ_{max} 503 nm.

2-(4-Methoxyphenyl)-6-(4-nitrophenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ad**): Bright yellow solid; yield 118 mg (81%); mp 164–165 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 3.87 (s, 3 H); 6.99–7.02 (m, 3 H); 7.86–7.89 (m, 2 H); 7.98– 8.02 (m, 2 H); 8.34–8.37 (m, 2 H); 8.48 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 55.5 (CH₃); 93.1 (C); 94.3 (CH); 114.4 (CH); 115.5 (C); 122.8 (C); 123.8 (CH); 125.2 (C); 126.7 (C); 128.2 (CH); 130.5 (CH); 141.1 (C); 147.8 (C); 148.3 (CH); 149.2 (C); 157.3 (C); 160.8 (C) ppm; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₄H₂₂N₄O₃Si 465.1353, found 465.1361; UV– vis λ_{max} ($\varepsilon \times 10^{-4}$) 275 (2.86), 332 (1.69) nm; emission λ_{max} S07 nm.

2,6-Bis(4-chlorophenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ba**): Bright yellow solid; yield 134 mg (93%); mp 178– 179 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 7.04 (s, 1 H); 7.44–7.49 (m, 4 H); 7.61–7.63 (m, 2 H); 7.98–8.01 (m, 2 H); 8.50 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 93.4 (C); 94.7 (CH); 114.9 (C); 124.7 (C); 126.4 (C); 128.0 (CH); 128.9 (CH); 129.1 (CH); 130.9 (CH); 131.3 (C); 132.6 (C); 135.0 (C); 135.2 (C); 149.0 (C); 149.4 (CH); 155.5 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₃H₁₉Cl₂N₃Si 436.0798, found 436.0808; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 289 (3.65), 298 (3.36), 360 (0.70) nm; emission λ_{max} 486 nm.

6-(4-Chlorophenyl)-2-phenyl-7-(trimethylsilylethynyl)pyrazolo-[1,5-a]pyrimidine (**3bb**): Bright yellow solid; yield 118 mg (89%); mp 146–147 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 7.08 (s, 1 H); 7.41 (t, *J* = 7.3 Hz, 1 H); 7.47–7.50 (m, 4 H); 7.63 (d, *J* = 8.5 Hz, 2 H); 8.07 (d, *J* = 7.2 Hz, 2 H); 8.49 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 93.5 (C); 94.7 (CH); 114.7 (C); 124.5 (C); 126.4 (C); 126.8 (CH); 128.9 (2 CH); 129.3 (CH); 130.9 (CH); 132.7 (C); 132.8 (C); 134.9 (C); 149.0 (C); 149.2 (CH); 156.7 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₃H₂₀ClN₃Si 402.1188, found 402.1201; UV–vis λ_{max} (ε × 10⁻⁴) 286 (3.55), 359 (0.65) nm; emission λ_{max} 492 nm.

6-(4-Chlorophenyl)-2-(4-methyl/phenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3bc**): Bright yellow solid; yield 121 mg (88%); mp 175–176 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 2.42 (s, 3 H); 7.04 (s, 1 H); 7.29 (d, *J* = 8.0 Hz, 2 H); 7.46–7.49 (m, 2 H); 7.60–7.64 (m, 2 H); 7.96 (d, *J* = 8.0 Hz, 2 H); 8.47 (s, 1 H) pm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 21.6 (CH₃); 93.6 (C); 94.4 (CH); 114.6 (C); 124.3 (C); 126.3 (C); 126.7 (CH); 128.9 (CH); 129.6 (CH); 130.0 (C); 130.9 (CH); 132.8 (C); 134.9 (C); 139.3 (C); 149.0 (C); 149.1 (CH); 156.9 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₄H₂₂ClN₃Si 416.1344, found 416.1356; UV–vis λ_{max} (ε × 10⁻⁴) 290 (3.55), 365 (0.72) nm; emission λ_{max} 494 nm.

6-(4-Chlorophenyl)-2-(4-methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3bd**): Bright yellow solid; yield 121 mg (85%); mp 133–134 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 3.87 (s, 1 H); 6.99 (s, 1 H); 7.01 (d, *J* = 8.8 Hz, 2 H); 7.47 (d, *J* = 8.5 Hz, 2 H); 7.62 (d, *J* = 8.5 Hz, 2 H); 8.00 (d, *J* = 8.8 Hz, 2 H); 8.46 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 55.5 (CH₃); 93.6 (C); 94.0 (CH); 114.3 (CH); 114.5 (C); 124.2 (C); 125.5 (C); 126.3 (C); 128.1 (CH); 128.9 (CH); 130.9 (CH); 132.8 (C); 134.9 (C); 149.0 (CH); 149.1 (C); 156.7 (C); 160.6 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₄H₂₂ClN₃OSi 454.1113, found 454.1122; UV–vis λ_{max} (ε × 10⁻⁴) 244 (2.44), 293 (3.65), 371 (0.90) nm; emission λ_{max} 497 nm.

2-(4-Chlorophenyl)-6-phenyl-7-(trimethylsilylethynyl)pyrazolo-[1,5-a]pyrimidine (**3ca**): Yellow solid; yield 115 mg (87%); mp 138– 139 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.28 (s, 9 H); 7.04 (s, 1 H); 7.44–7.53 (m, 5 H); 7.67–7.69 (m, 2 H); 7.99–8.02 (m, 2 H); 8.55 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 93.7 (C); 94.6 (CH); 114.4 (C); 126.0 (C); 126.4 (C); 128.0 (CH); 128.7 (CH); 128.8 (CH); 129.1 (CH); 129.6 (CH); 131.5 (C); 134.1 (C); 135.1 (C); 149.0 (C); 149.9 (CH); 155.3 (C) ppm; HRMS (ESI-

The Journal of Organic Chemistry

TOF) m/z [M + H]⁺ calcd for C₂₃H₂₀ClN₃Si 402.1188, found 402.1188; UV-vis λ_{max} ($\varepsilon \times 10^{-4}$) 241 (2.12), 285 (4.41), 360 (0.84) nm; emission λ_{max} 484 nm.

nm; emission λ_{max} 484 nm. 2,6-Diphenyl-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3cb**): Yellow solid; yield 105 mg (87%); mp 139–140 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.28 (s, 9 H); 7.08 (s, 1 H); 7.39–7.53 (m, 6 H); 7.68–7.70 (m, 2 H); 8.07–8.09 (m, 2 H); 8.54 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 93.8 (C); 94.6 (CH); 114.2 (C); 125.8 (C); 126.4 (C); 126.8 (CH); 128.6 (CH); 128.7 (CH); 128.9 (CH); 129.2 (CH); 129.6 (CH); 132.9 (C); 134.2 (C); 149.0 (C); 149.7 (CH); 156.5 (C) ppm; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₃H₂₁N₃Si 368.1578, found 368.1572; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 284 (3.30), 356 (0.58) nm; emission λ_{max} 489 nm.

2-(4-Methylphenyl)-6-phenyl-7-(trimethylsilylethynyl)pyrazolo-[1,5-a]pyrimidine (**3cc**): Yellow solid; yield 111 mg (88%); mp 145– 146 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.28 (s, 9 H); 2.42 (s, 3 H); 7.04 (s, 1 H); 7.29 (d, *J* = 8.0 Hz, 2 H); 7.45–7.52 (m, 3 H); 7.67– 7.69 (m, 2 H); 7.97 (d, *J* = 8.0 Hz, 2 H); 8.53 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 21.6 (CH₃); 93.9 (C); 94.3 (CH); 114.1 (C); 125.7 (C); 126.4 (C); 126.7 (CH); 128.6 (CH); 128.7 (CH); 129.58 (CH); 129.61 (CH); 130.1 (C); 134.3 (C); 139.2 (C); 149.0 (C); 149.6 (CH); 156.7 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₄H₂₃N₃Si 382.1734, found 382.1735; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 287 (3.12), 361 (0.62) nm; emission λ_{max} 498 nm.

2-(4-Methoxyphenyl)-6-phenyl-7-(trimethylsilylethynyl)pyrazolo-[1,5-a]pyrimidine (**3cd**): Bright yellow solid; yield 107 mg (82%); mp 166–167 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.28 (s, 9 H); 3.87 (s, 3 H); 6.99 (s, 1 H); 7.00–7.02 (m, 2 H); 7.45–7.50 (m, 3 H); 7.67–7.69 (m, 2 H); 8.00–8.02 (m, 2 H); 8.51 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 55.5 (CH₃); 93.8 (CH); 93.9 (C); 114.0 (C); 114.3 (CH); 125.5 (C); 125.6 (C); 126.3 (C); 128.1 (CH); 128.6 (CH); 128.6 (CH); 129.6 (CH); 134.3 (C); 149.0 (C); 149.5 (CH); 156.4 (C); 160.6 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₄H₂₃N₃OSi 398.1683, found 398.1697; UV–vis λ_{max} 488 nm.

2-(4-Chlorophenyl)-6-(4-methylphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3da**): Beige solid; yield 125 mg (91%); mp 170–171 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 2.45 (s, 3 H); 7.03 (s, 1 H); 7.30 (d, *J* = 8.0 Hz, 2 H); 7.45 (d, *J* = 8.5 Hz, 2 H); 7.58 (d, *J* = 8.0 Hz, 2 H); 8.00 (d, *J* = 8.5 Hz, 2 H); 8.54 (s, 1 H) pm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 21.4 (CH₃); 93.8 (C); 94.5 (CH); 114.2 (C); 125.9 (C); 126.1 (C); 128.0 (CH); 129.1 (CH); 129.37 (CH); 129.40 (CH); 131.1 (C); 131.5 (C); 135.0 (C); 138.8 (C); 148.9 (C); 150.0 (CH); 155.1 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₄H₂₂ClN₃Si 416.1344, found 416.1350; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 289 (3.41), 360 (0.69) nm; emission λ_{max} 484 nm.

6-(4-Methylphenyl)-2-phenyl-7-(trimethylsilylethynyl)pyrazolo-[1,5-a]pyrimidine (**3db**): Pale yellow solid; yield 106 mg (84%); mp 128–129 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 2.45 (s, 3 H); 7.07 (s, 1 H); 7.31 (d, *J* = 8.0 Hz, 2 H); 7.39–7.42 (m, 1 H); 7.46–7.50 (m, 2 H); 7.59 (d, *J* = 8.0 Hz, 2 H); 8.07 (d, *J* = 7.7 Hz, 2 H); 8.53 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 21.5 (CH₃); 94.0 (C); 94.5 (CH); 114.0 (C); 125.7 (C); 126.2 (C); 126.8 (CH); 128.9 (CH); 129.1 (CH); 129.36 (CH); 129.43 (CH); 131.3 (C); 133.0 (C); 138.7 (C); 148.9 (C); 149.9 (CH); 156.4 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₄H₂₃N₃Si 382.1734, found 382.1737; UV–vis λ_{max} (ε × 10⁻⁴) 285 (2.93), 359 (0.50) nm; emission λ_{max} 489 nm.

2,6-Bis(4-methylphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3dc**): Bright yellow solid; yield 112 mg (86%); mp 183– 184 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 2.42 (s, 3 H); 2.45 (s, 3 H); 7.03 (s, 1 H); 7.28–7.31 (m, 4 H); 7.59 (d, *J* = 8.1 Hz, 2 H); 7.97 (d, *J* = 8.1 Hz, 2 H); 8.52 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 21.4 (CH₃); 21.5 (CH₃); 94.0 (C); 94.2 (CH); 113.9 (C); 125.5 (C); 126.1 (C); 126.7 (CH); 129.3 (CH); 129.4 (CH); 129.6 (CH); 130.2 (C); 131.3 (C); 138.7 (C); 139.1 (C); 148.9 (C); 149.7 (CH); 156.5 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₅H₂₅N₃Si 396.1891, found 396.1899; UV–vis $\lambda_{\rm max}~(\varepsilon\times10^{-4})$ 289 (3.05), 362 (0.60) nm; emission $\lambda_{\rm max}$ 493 nm.

2-(4-Methoxyphenyl)-6-(4-methylphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3dd**): Bright yellow solid; yield 111 mg (82%); mp 144–145 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 2.45 (s, 3 H); 3.87 (s, 3 H); 6.98 (s, 1 H); 7.01 (d, *J* = 8.8 Hz, 2 H); 7.30 (d, *J* = 8.0 Hz, 2 H); 7.58 (d, *J* = 8.0 Hz, 2 H); 8.01 (d, *J* = 8.8 Hz, 2 H); 8.51 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 21.4 (CH₃); 55.5 (CH₃); 93.8 (CH); 94.0 (C); 113.8 (C); 114.3 (CH); 125.4 (C); 125.7 (C); 126.0 (C); 128.1 (CH); 129.3 (CH); 129.4 (CH); 131.4 (C); 138.6 (C); 149.0 (C); 149.7 (CH); 156.3 (C); 160.6 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₅H₂₅N₃OSi 434.1659, found 434.1669; UV–vis λ_{max} ($\varepsilon \times$ 10⁻⁴) 296 (2.94), 368 (0.66) nm; emission λ_{max} 492 nm.

2-(4-Chlorophenyl)-6-(4-methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ea**): Bright yellow solid; yield 121 mg (85%); mp 194–195 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 3.89 (s, 3 H); 7.02–7.04 (m, 3 H); 7.43–7.46 (m, 2 H); 7.61– 7.64 (m, 2 H); 7.98–8.01 (m, 2 H); 8.53 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 55.6 (CH₃); 93.9 (C); 94.5 (CH); 114.1 (C); 114.2 (CH); 125.7 (C); 125.9 (C); 126.3 (C); 128.0 (CH); 129.1 (CH); 130.8 (CH); 131.5 (C); 135.0 (C); 148.8 (C); 150.0 (CH); 155.1 (C); 160.1 (C) ppm; HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₄H₂₂ClN₃OSi 432.1293, found 432.1298; UV– vis λ_{max} ($\varepsilon \times 10^{-4}$) 290 (3.44), 365 (0.66) nm; emission λ_{max} 485 nm.

6-(4-Methoxyphenyl)-2-phenyl-7-(trimethylsilylethynyl)pyrazolo-[1,5-a]pyrimidine (**3eb**): Bright yellow solid; yield 80 mg (61%); mp 119–120 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 3.89 (s, 3 H); 7.01–7.05 (m, 2 H); 7.06 (s, 1 H); 7.38–7.42 (m, 1 H); 7.46–7.50 (m, 2 H); 7.62–7.65 (m, 2 H); 8.06–8.08 (m, 2 H); 8.53 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 55.5 (CH₃); 94.0 (C); 94.5 (CH); 113.9 (C); 114.1 (CH); 125.5 (C); 125.9 (C); 126.4 (C); 126.8 (CH); 128.9 (CH); 129.1 (CH); 130.8 (CH); 133.0 (C); 148.8 (C); 149.8 (CH); 156.3 (C); 160.1 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₄H₂₃N₃OSi 398.1683, found 398.1692; UV–vis λ_{max} (ε × 10⁻⁴) 287 (3.48), 362 (0.63) nm; emission λ_{max} 487 nm.

6-(4-Methoxyphenyl)-2-(4-methylphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ec**): Bright yellow solid; yield 83 mg (61%); mp 176–177 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 2.41 (s, 3 H); 3.88 (s, 3 H); 7.01–7.04 (m, 3 H); 7.28 (d, *J* = 8.0 Hz, 2 H); 7.63 (d, *J* = 8.7 Hz, 2 H); 7.96 (d, *J* = 8.0 Hz, 2 H); 8.51 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 21.5 (CH₃); 55.5 (CH₃); 94.1 (C); 94.2 (CH); 113.7 (C); 114.1 (CH); 125.3 (C); 125.9 (C); 126.5 (C); 126.7 (CH); 129.6 (CH); 130.2 (C); 130.8 (CH); 139.1 (C); 148.8 (C); 149.7 (CH); 156.4 (C); 160.1 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₅H₂₅N₃OSi 434.1659, found 434.1669; UV–vis λ_{max} (ε × 10⁻⁴) 291 (2.79), 365 (0.54) nm; emission λ_{max} 489 nm.

2,6-Bis(4-methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5a]pyrimidine (**3ed**): Bright yellow solid; yield 92 mg (65%); mp 147– 148 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.30 (s, 9 H); 3.87 (s, 3 H); 3.89 (s, 3 H); 6.97 (s, 1 H); 6.99–7.04 (m, 4 H); 7.60–7.64 (m, 2 H); 7.98–8.02 (m, 2 H); 8.50 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 55.5 (CH₃); 55.6 (CH₃); 93.8 (CH); 94.1 (C); 113.7 (C); 114.1 (CH); 114.3 (CH); 125.2 (C); 125.7 (C); 125.8 (C); 126.6 (C); 128.1 (CH); 130.8 (CH); 148.9 (C); 149.7 (CH); 156.2 (C); 160.1 (C); 160.5 (C) ppm; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₅H₂₅N₃O₂Si 450.1608, found 450.1619; UV– vis λ_{max} ($\varepsilon \times 10^{-4}$) 296 (2.92), 368 (0.70) nm; emission λ_{max} 490 nm.

6-Phenyl-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ce**): Yellow solid; yield 42 mg (44%); mp 99–100 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.23 (s, 9 H); 6.79 (d, *J* = 2.3 Hz, 1 H); 7.47– 7.49 (m, 3 H); 7.65–7.67 (m, 2 H); 8.23 (d, *J* = 2.3 Hz, 1 H); 8.56 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 93.7 (C); 98.0 (CH); 114.1 (C); 126.3 (C); 126.7 (C); 128.7 (CH); 128.8 (CH); 129.7 (CH); 134.1 (C); 145.3 (CH); 147.9 (C); 149.8 (CH) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₁₇H₁₇N₃Si 314.1084, found 314.1093; UV–vis λ_{max} (ε × 10⁻⁴) 251 (3.03), 349 (0.53) nm.

6-(4-Methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (3ee): Yellow solid; yield 51 mg (48%); mp 105-106 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.25 (s, 9 H); 3.87 (s, 3 H); 6.77 (d, J = 2.4 Hz, 1 H); 7.00–7.03 (m, 2 H); 7.58–7.62 (m, 2 H); 8.20 (d, J = 2.4 Hz, 1 H); 8.55 (s, 1 H) ppm; 13 C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 55.5 (CH₃); 94.0 (C); 97.9 (CH); 113.8 (C); 114.1 (CH); 126.0 (C); 126.2 (C); 126.3 (C); 130.9 (CH); 145.1 (CH); 147.7 (C); 150.0 (CH); 160.1 (C) ppm; HRMS (ESI-TOF) m/z M + Na]⁺ calcd for C₁₈H₁₉N₃OSi 344.1190, found 344.1193; UV-vis $\lambda_{\rm max}~(\varepsilon \times 10^{-4})~253~(3.42),~285~(1.71),~296~(1.60),~353~(0.60)$ nm. 2-(3-Fluorophenyl)-6-phenyl-7-(trimethylsilylethynyl)pyrazolo-[1,5-a]pyrimidine (3cf): Yellow solid; yield 81 mg (64%); mp 122-124 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.28 (s, 9 H); 7.06 (s, 1 H); 7.07-7.12 (m, 1 H); 7.41-7.53 (m, 4 H); 7.67-7.70 (m, 2 H); 7.78-7.83 (m, 2 H); 8.56 (s, 1 H) ppm; ¹³C NMR (100 MHz, $CDCl_3$) $\delta =$ -0.6 (CH₃); 93.6 (C); 94.9 (CH); 113.6 (d, J_{C-F} = 22.8 Hz, C); 114.5 (C); 115.9 (d, $J_{C-F} = 21.3$ Hz, C); 122.5 (d, $J_{C-F} = 2.8$ Hz, C); 126.1 (C); 126.5 (C); 128.7 (CH); 128.8 (CH); 129.6 (CH); 130.4 (d, J_{C-F} = 8.3 Hz, C); 134.1 (C); 135.2 (d, J_{C-F} = 8.2 Hz, C); 149.0 (C); 150.0 (CH); 155.2 (C); 163.3 (d, J_{C-F} = 245.2 Hz, C) ppm; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{23}H_{20}FN_3Si$ 386.1483, found 386.1488; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 241 (1.36) nm; emission λ_{max} 431 nm.

2-(3-Fluorophenyl)-6-(4-methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ef**): Yellow solid; yield 76 mg (55%); mp 126–127 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.31 (s, 9 H); 3.89 (s, 1 H); 7.00–7.04 (m, 3 H); 7.07–7.11 (m, 1 H); 7.41–7.46 (m, 1 H); 7.61–7.65 (m, 2 H); 7.78–7.83 (m, 2 H); 8.54 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 55.6 (CH₃); 93.9 (C); 94.8 (CH); 113.5 (d, J_{C-F} = 22.8 Hz, C); 114.2 (C, CH); 115.9 (d, J_{C-F} = 21.3 Hz, C); 122.4 (d, J_{C-F} = 2.8 Hz, C); 125.8 (C); 125.9 (C); 126.3 (C); 130.4 (d, J_{C-F} = 8.4 Hz, C); 130.8 (CH); 135.3 (d, J_{C-F} = 8.2 Hz, C); 148.8 (C); 150.1 (CH); 155.0 (C); 160.2 (C); 163.3 (d, J_{C-F} = 245.1 Hz, C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₄H₂₂FN₃OSi 438.1408, found 438.1408; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 243 (1.04) nm; emission λ_{max} 455 nm.

6-Phenyl-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine-3carbonitrile (**3cg**): Pale beige solid; yield 69 mg (66%); mp 139–140 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.24 (s, 9 H); 7.50–7.55 (m, 3 H); 7.64–7.66 (m, 2 H); 8.46 (s, 1 H); 8.79 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.8 (CH₃); 84.2 (C); 92.5 (C); 112.5 (C); 117.3 (C); 128.1 (C); 128.6 (C); 128.9 (CH); 129.6 (2 CH); 132.8 (C); 147.6 (CH); 149.2 (C); 153.4 (CH) ppm; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₈H₁₆N₄Si 339.1036, found 339.1023; UV– vis λ_{max} (ε × 10⁻⁴) 250 (2.60), 262 (2.19), 281 (1.31), 363 (0.19) nm; emission λ_{max} 456 nm.

6-(4-Methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile (**3eg**): Pale beige solid; yield 82 mg (72%); mp 164–165 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ = 0.27 (s, 9 H); 3.89 (s, 3 H); 7.02–7.06 (m, 2 H); 7.58–7.62 (m, 2 H); 8.44 (s, 1 H); 8.77 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.7 (CH₃); 55.6 (CH₃); 84.1 (C); 92.7 (C); 112.6 (C); 114.4 (CH); 116.9 (C); 124.8 (C); 127.5 (C); 128.3 (C); 130.9 (CH); 147.4 (CH); 148.9 (C); 153.6 (CH); 160.7 (C) ppm; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₉H₁₈N₄SiO 369.1142, found 369.1160; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 254 (2.78), 299 (1.77), 358 (0.13); emission λ_{max} 458 nm.

Ethyl 6-Phenyl-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine-3-carboxylate (**3ch**): Gray solid; yield 90 mg (75%); mp 134–135 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.23 (s, 9 H); 1.43 (t, *J* = 7.1 Hz, 3 H); 4.61 (q, *J* = 7.1 Hz, 2 H); 7.46–7.53 (m, 3 H); 7.63– 7.66 (m, 2 H); 8.64 (s, 1 H), 8.83 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.7 (CH₃); 14.7 (CH₃); 60.6 (CH₂); 93.0 (C); 104.1 (C); 116.0 (C); 127.7 (C); 128.8 (CH); 129.2 (CH); 129.6 (CH); 133.3 (C); 146.9 (C); 147.8 (CH); 153.0 (CH); 160.5 (C) ppm; one signal is overlapped; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₀H₂₁N₃O₂Si 386.1295, found 386.1299; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 262 (2.25), 278 (1.54), 366 (0.33) nm; emission λ_{max} 460 nm.

Ethyl 6-(4-Methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5a]pyrimidine-3-carboxylate (**3eh**): Pale yellow solid; yield 104 mg (80%); mp 138–139 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.26 (s, 9 H); 1.42 (t, *J* = 7.1 Hz, 3 H); 3.88 (s, 3 H); 4.45 (q, *J* = 7.1 Hz, 2 H); 7.01–7.05 (m, 2 H); 7.58–7.62 (m, 2 H); 8.62 (s, 1 H); 8.81 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.6 (CH₃); 14.7 (CH₃); 55.6 (CH₃); 60.6 (CH₂); 93.3 (C); 104.0 (C); 114.3 (CH); 115.7 (C); 125.4 (C); 127.2 (C); 127.4 (C); 130.9 (CH); 146.7 (C); 147.7 (CH); 153.2 (CH); 160.5 (C); 162.5 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₁H₂₃N₃O₃Si 416.1401, found 416.1386; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 261 (2.72), 297 (1.73), 357 (0.48) nm; emission λ_{max} 460 nm.

2-Methyl-3,6-diphenyl-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ci**): According to ¹H NMR spectrum, it contains approximately 10% of unidentified byproduct even after two consecutive purifications on silica; orange solid; 77 mg (61%; 55% of pure compound); ¹H NMR (400 MHz, CDCl₃) δ = 0.25 (s, 9 H); 2.72 (s, 3 H); 7.31–7.35 (t, *J* = 7.4 Hz, 1 H); 7.47–7.51 (m, 5 H); 7.65–7.67 (m, 2 H); 7.72–7.74 (m, 2 H); 8.55 (s, 1 H) ppm.

6-(4-Methoxyphenyl)-2-methyl-3-phenyl-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine (**3ei**): Yellow solid; yield 71 mg (52%); mp 149–150 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.27 (s, 9 H); 2.71 (s, 3 H); 3.88 (s, 3 H); 7.01–7.03 (m, 2 H); 7.32 (t, *J* = 7.5 Hz, 1 H); 7.49 (t, *J* = 7.5 Hz, 2 H); 7.60–7.62 (m, 2 H); 7.72–7.74 (m, 2 H); 8.53 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.5 (CH₃); 14.6 (CH₃); 55.5 (CH₃); 94.1 (C); 110.5 (CH); 113.8 (C); 114.1 (CH); 125.6 (C); 125.7 (C); 126.5 (C); 126.6 (CH); 128.7 (CH); 129.0 (CH); 130.8 (CH); 132.2 (C); 145.2 (C); 149.7 (CH); 152.8 (C); 160.0 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Ag]⁺ calcd for C₂₅H₂₅N₃OSi 518.0812, found 518.0796; UV–vis λ_{max} (ε × 10⁻⁴) 283 (3.08), 352 (0.43) nm; emission λ_{max} 489 nm.

2-(Cyanomethyl)-6-phenyl-7-(trimethylsilylethynyl)pyrazolo[1,5a]pyrimidine-3-carbonitrile (**3cj**): Beige solid; yield 59 mg (50%); mp 164–165 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ = 0.26 (s, 9 H); 4.14 (s, 2 H); 7.52–7.56 (m, 3 H); 7.64–7.66 (m, 2 H); 8.81 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.8 (CH₃); 17.8 (CH₂); 83.7 (C); 92.1 (C); 111.3 (C); 114.3 (C); 118.4 (C); 128.0 (C); 128.9 (C); 129.0 (CH); 129.5 (CH); 129.7 (CH); 132.5 (C); 149.7 (C); 150.3 (C); 154.0 (CH) ppm; HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₀H₁₇N₅Si 356.1326, found 356.1336; UV–vis λ_{max} ($\varepsilon \times$ 10⁻⁴) 251 (2.47), 263 (1.77), 281 (1.25), 360 (0.22) nm; emission λ_{max} 448 nm.

2-(Cyanomethyl)-6-(4-methoxyphenyl)-7-(trimethylsilylethynyl)pyrazolo[1,5-a]pyrimidine-3-carbonitrile (**3e**j): Pale yellow solid; yield 63 mg (50%); mp 165–167 °C; ¹H NMR (400 MHz, CDCl₃) δ = 0.29 (s, 9 H); 3.89 (s, 3 H); 4.12 (s, 2 H); 7.03–7.06 (m, 2 H); 7.59–7.61 (m, 2 H); 8.79 (s, 1 H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = -0.8 (CH₃); 17.8 (CH₂); 55.6 (CH₃); 83.6 (C); 92.4 (C); 111.4 (C); 114.3 (C); 118.0 (C); 114.5 (CH); 124.5 (C); 127.4 (C); 128.6 (C); 130.8 (CH); 149.4 (C); 150.1 (C); 154.1 (CH); 160.9 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₁H₁₉N₅OSi 408.1251, found 408.1275; UV–vis λ_{max} ($\varepsilon \times 10^{-4}$) 262 (2.90), 300 (2.10), 353 (0.55) nm; emission λ_{max} 460 nm.

Procedure for the Desilylation of Compound 3cb. A suspension of TMS-protected pyrazolopyrimidine 3cb (367 mg, 1 mmol) and anhydrous K_2CO_3 (14 mg, 0.1 mmol) in MeOH (5 mL) was stirred at room temperature for 2 h. Methanol was removed under reduced pressure, and the residue was passed through a pad of silica using CH_2Cl_2 as eluent to provide the acetylene 4.

7-Ethynyl-2,6-diphenylpyrazolo[1,5-*a*]*pyrimidine* (**4**): Pale yellow solid; yield 236 mg (80%); mp 162–164 °C (dec.); ¹H NMR (400 MHz, DMSO-*d*₆): 5.40 (s, 1 H), 7.42 (s, 1 H), 7.43–7.58 (m, 6 H), 7.74–7.76 (m, 2 H), 8.08–8.10 (m, 2 H), 8.66 (s, 1 H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 73.5 (CH), 94.5 (CH), 96.9 (C), 125.1 (C), 125.7 (C), 126.3 (CH), 128.7 (CH), 128.8 (CH), 128.9 (CH), 129.2 (CH), 129.5 (CH), 132.2 (C), 133.5 (C), 148.3 (C), 150.0 (CH), 155.3 (C) ppm; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₀H₁₃N₃ 318.1002, found 318.0992.

The Journal of Organic Chemistry

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b02217.

Copies of ¹H and ¹³C NMR spectra for compounds 3aa-ej and 4; detailed explanation of compound 3ac structure determination by NMR spectroscopy; X-ray diffraction data for compound 3aa (PDF) X-ray crystallographic data for 3aa (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: a.pankova@spbu.ru.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work was financially supported by the grant of the President of Russian Federation (No. MK-5965.2016.3). NMR, HRMS, UV, and XRD analyses were performed at the Saint Petersburg State University Center for Magnetic Resonance, Center for Chemical Analysis and Materials Research, Educational Resource Center of Chemistry and X-ray Diffraction Center, respectively.

REFERENCES

(1) Elie, R.; Ruther, E.; Farr, I.; Emilien, G.; Salinas, E. J. Clin. Psychiatry 1999, 60, 536-544.

(2) Petroski, R. E.; Pomeroy, J. E.; Das, R.; Bowman, H.; Yang, W.; Chen, A. P.; Foster, A. C. J. Pharmacol. Exp. Ther. 2006, 317, 369–377.
(3) Lippa, A.; Czobor, P.; Stark, J.; Beer, B.; Kostakis, E.; Gravielle,

M.; Bandyopadhyay, S.; Russek, S. J.; Gibbs, T. T.; Farb, D. H.; Skolnick, P. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 7380-7385.

(4) (a) Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Besnard, F.; Costa, B.; Montali, M.; Martini, C.; Fohlin, J.; De Siena, G.; Aiello, P. M. J. Med. Chem. 2005, 48, 6756–6760. (b) Neubauer, D. N. Expert Opin. Invest. Drugs 2005, 14, 1269–1276. (c) Holzinger, E. IDrugs 2005, 8, 410–415.

(5) (a) Kamal, A.; Tamboli, J. R.; Nayak, V. L.; Adil, S. F.; Vishnuvardhan, M. V. P. S.; Ramakrishna, S. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 3208–3215. (b) Liu, Y.; Laufer, R.; Patel, N. K.; Ng, G.; Sampson, P. B.; Li, S.-W.; Lang, Y.; Feher, M.; Brokx, R.; Beletskaya, I.; Hodgson, R.; Plotnikova, O.; Awrey, D. E.; Qiu, W.; Chirgadze, N. Y.; Mason, J. M.; Wei, X.; Lin, D.C.-C.; Che, Y.; Kiarash, R.; Fletcher, G. C.; Mak, T. W.; Bray, M. R.; Pauls, H. W. ACS Med. Chem. Lett. **2016**, *7*, 671–675.

(6) Ahmed, O. M.; Mohamed, M. A.; Ahmed, R. R.; Ahmed, S. A. *Eur. J. Med. Chem.* **2009**, *44*, 3519–3523.

(7) Bondock, S.; Fadaly, W.; Metwally, M. A. Eur. J. Med. Chem. 2010, 45, 3692–3701.

(8) Al-Adiwish, W. M.; Tahir, M. I. M.; Siti-Noor-Adnalizawati, A.; Hashim, S. F.; Ibrahim, N.; Yaacob, W. A. *Eur. J. Med. Chem.* **2013**, *64*, 464–476.

(9) Senga, K.; Novinson, T.; Springer, R. H.; Rao, R. P.; O'Brien, D. E.; Robins, R. K.; Wilson, H. R. J. Med. Chem. **1975**, *18*, 312–314.

(10) Senga, K.; Novinson, T.; Wilson, H. R.; Robins, R. K. J. Med. Chem. 1981, 24, 610-613.

(11) (a) Wustrow, D. J.; Capiris, T.; Rubin, R.; Knobelsdorf, J. A.; Akunne, H.; Davis, M. D.; MacKenzie, R.; Pugsley, T. A.; Zoski, K. T.; Heffner, T. G.; Wise, L. D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2067– 2070. (b) Gilligan, P. J.; Baldauf, C.; Cocuzza, A.; Chidester, D.; Zaczek, R.; Fitzgerald, L. W.; McElroy, J.; Smith, M. A.; Shen, H.-S. L.; Saye, J. A.; Christ, D.; Trainor, G.; Robertson, D. W.; Hartig, P. *Bioorg. Med. Chem.* **2000**, *8*, 181–189. (12) (a) Ivachtchenko, A. V.; Dmitriev, D. E.; Golovina, E. S.; Kadieva, M. G.; Koryakova, A. G.; Kysil, V. M.; Mitkin, O. D.; Okun, I. M.; Tkachenko, S. E.; Vorobiev, A. A. J. Med. Chem. 2010, 53, 5186–5196. (b) Ivachtchenko, A. V.; Golovina, E. S.; Kadieva, M. G.; Kysil, V. M.; Mitkin, O. D.; Tkachenko, S. E.; Okun, I. M. J. Med. Chem. 2011, 54, 8161–8173. (c) Ivachtchenko, A. V.; Golovina, E. S.; Kadieva, M. G.; Koryakova, A. G.; Mitkin, O. D.; Tkachenko, S. E.; Kysil, V. M.; Okun, I. M. Eur. J. Med. Chem. 2011, 46, 1189–1197.

(13) (a) George, C. F. P. Lancet 2001, 358, 1623–1626. (b) Sanger, D. J. CNS Drugs 2004, 18, 9–15. (c) Sullivan, S. K.; Petroski, R. E.; Verge, G.; Gross, R. S.; Foster, A. C.; Grigoriadis, D. E. J. Pharmacol. Exp. Ther. 2004, 311, 537–546. (d) Foster, A. C.; Pelleymounter, M. A.; Cullen, M. J.; Lewis, D.; Joppa, M.; Chen, T. K.; Bozigian, H. P.; Gross, R. S.; Gogas, K. R. J. Pharmacol. Exp. Ther. 2004, 311, 547–559. (e) Platt, D. M.; Duggan, A.; Spealman, R. D.; Cook, J. M.; Li, X.; Yin, W.; Rowlett, J. K. J. Pharmacol. Exp. Ther. 2005, 313, 658–667.

(14) Compton, D. R.; Sheng, S.; Carlson, K. E.; Rebacz, N. A.; Lee, I. Y.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. **2004**, 47, 5872–5893.

(15) Hwang, J. Y.; Windisch, M. P.; Jo, S.; Kim, K.; Kong, S.; Kim, H. C.; Kim, S.; Kim, H.; Lee, M. E.; Kim, Y.; Choi, J.; Park, D.-S.; Park, E.; Kwon, J.; Nam, J.; Ahn, S.; Cechetto, J.; Kim, J.; Liuzzi, M.; No, Z.; Lee, J. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 7297–7301.

(16) Xu, Y.; Brenning, B. G.; Kultgen, S. G.; Foulks, J. M.; Clifford, A.; Lai, S.; Chan, A.; Merx, S.; McCullar, M. V.; Kanner, S. B.; Ho, K.-K. ACS Med. Chem. Lett. **2015**, *6*, 63–67.

(17) Almansa, C.; de Arriba, A. F.; Cavalcanti, F. L.; Gomez, L. A.; Miralles, A.; Merlos, M.; Garcia-Rafanell, J.; Forn, J. J. Med. Chem. 2001, 44, 350–361.

(18) (a) Mukaiyama, H.; Nishimura, T.; Kobayashi, S.; Komatsu, Y.; Kikuchi, S.; Ozawa, T.; Kamada, N.; Ohnota, H. *Bioorg. Med. Chem.* **2008**, *16*, 909–921. (b) Drizin, I.; Holladay, M. W.; Yi, L.; Zhang, H. Q.; Gopalakrishnan, S.; Gopalakrishnan, M.; Whiteaker, K. L.; Buckner, S. A.; Sullivan, J. P.; Carroll, W. A. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1481–1484.

(19) (a) Fookes, C. J. R.; Pham, T. Q.; Mattner, F.; Greguric, I.; Loc'h, C.; Liu, X.; Berghofer, P.; Shepherd, R.; Gregoire, M.-C.; Katsifis, A. J. Med. Chem. 2008, 51, 3700–3712. (b) Xu, J.; Liu, H.; Li, G.; He, Y.; Ding, R.; Wang, X.; Feng, M.; Zhang, S.; Chen, Y.; Li, S.; Zhao, M.; Qi, C.; Dang, Y. Bioorg. Med. Chem. Lett. 2011, 21, 4736– 4741. (c) Tang, D.; McKinley, E. T.; Hight, M. R.; Uddin, M. I.; Harp, J. M.; Fu, A.; Nickels, M. L.; Buck, J. R.; Manning, H. C. J. Med. Chem. 2013, 56, 3429–3433.

(20) Gregg, B. T.; Tymoshenko, D. O.; Razzano, D. A.; Johnson, M. R. J. Comb. Chem. 2007, 9, 507–512.

(21) Tsai, P. C.; Wang, I. J. Dyes Pigm. 2008, 76, 575-581.

(22) Khalil, K. D.; Al-Matar, H. M.; Al-Dorri, D. M.; Elnagdi, M. H. Tetrahedron 2009, 65, 9421–9427.

(23) Bel Abed, H.; Mammoliti, O.; Van Lommen, G.; Herdewijn, P. *Tetrahedron Lett.* **2013**, *54*, 2612–2614.

(24) Shekarrao, K.; Kaishap, P. P.; Saddanapu, V.; Addlagatta, A.; Gogoi, S.; Boruah, R. C. *RSC Adv.* **2014**, *4*, 24001–24006.

(25) Zhang, X.; Song, Y.; Gao, L.; Guo, X.; Fan, X. Org. Biomol. Chem. 2014, 12, 2099–2107.

(26) Saikia, P.; Gogoi, S.; Boruah, R. C. J. Org. Chem. 2015, 80, 6885-6889.

(27) (a) Ming, L.; Shuwen, W.; Lirong, W.; Huazheng, Y.; Xiuli, Z. J. *Heterocycl. Chem.* 2005, 42, 925–930. (b) Baraldi, P. G.; Fruttarolo, F.; Tabrizi, M. A.; Romagnoli, R.; Preti, D.; Ongini, E.; El-Kashef, H.; Carrion, M. D.; Borea, P. A. J. *Heterocycl. Chem.* 2007, 44, 355–361.
(c) Daniels, R. N.; Kim, K.; Lebois, E. P.; Muchalski, H.; Hughes, M.; Lindsley, C. W. *Tetrahedron Lett.* 2008, 49, 305–310.

(28) Buriol, L.; Munchen, T. S.; Frizzo, C. P.; Marzari, M. R. B.; Zanatta, N.; Bonacorso, H. G.; Martins, M. A. P. Ultrason. Sonochem. **2013**, 20, 1139–1143.

(29) (a) Kumar, P. M.; Kumar, K. S.; Mohakhud, P. K.; Mukkanti, K.; Kapavarapu, R.; Parsa, K. V. L.; Pal, M. *Chem. Commun.* **2012**, *48*, 431–433. (b) Saikia, P.; Kaishap, P. P.; Prakash, R.; Shekarrao, K.; Gogoi, S.; Boruah, R. C. *Tetrahedron Lett.* **2014**, *55*, 3896–3900.

The Journal of Organic Chemistry

(30) Aggarwal, R.; Singh, G.; Kaushik, P.; Kaushik, D.; Paliwal, D.; Kumar, A. *Eur. J. Med. Chem.* **2015**, *101*, 326–333.

(31) Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. **2016**, 81, 3321–3328.

(32) (a) Pankova, A. S.; Golubev, P. R.; Ananyev, I. V.; Kuznetsov, M. A. *Eur. J. Org. Chem.* **2012**, 2012, 5965–5971. (b) Golubev, P. R.; Pankova, A. S.; Kuznetsov, M. A. *Eur. J. Org. Chem.* **2014**, 2014, 3614–3621.

(33) (a) Yin, L.; Liebscher, J. Synthesis 2005, 131–135. (b) Kumar, P. M.; Kumar, K. S.; Meda, C. L. T.; Reddy, G. R.; Mohakhud, P. K.; Mukkanti, K.; Krishna, G. R.; Reddy, C. M.; Rambabu, D.; Kumar, K. S.; Priya, K. K.; Chennubhotla, K. S.; Banote, R. K.; Kulkarni, P.; Parsa, K. V. L.; Pal, M. *MedChemComm* 2012, *3*, 667–672. (c) Li, Y.; Cheng, H.; Zhang, Z.; Zhuang, X.; Luo, J.; Long, H.; Zhou, Y.; Xu, Y.; Taghipouran, R.; Li, D.; Patterson, A.; Smaill, J.; Tu, Z.; Wu, D.; Ren, X.; Ding, K. ACS Med. Chem. Lett. 2015, *6*, 543–547.

(34) Golubev, P. R.; Pankova, A. S.; Kuznetsov, M. A. J. Org. Chem. 2015, 80, 4545–4552.

(35) (a) Otero, I.; Methling, K.; Feist, H.; Michalik, M.; Quincoces, J.; Reinke, H.; Peseke, K. J. Carbohydr. Chem. 2005, 24, 809–829.
(b) Ahmed, S. A.; Abdelhamid, A. O.; El-Ghandour, A. H. H.; Mohamed, M. A.; Mohamed, B. M. J. Chem. Res. 2008, 2008, 26–31.
(c) Abdelhamid, A. O.; Awad, A. A. J. Heterocycl. Chem. 2007, 44, 701–705.

(36) CCDC 1508854 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.